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ABSTRACT 

This paper presents the development and performance evaluation 
of a methodology for distinguishing between mainlobe and side- 
lobe detections that arise in adaptive radar systems operating in 
adverse environments. Various adaptive detection test statistics 
such as the adaptive matched filter (AMF), the generalized like- 
lihood ratio test (GLRT) and adaptive coherence estimate (ACE), 
and combinations of these, have been previously analyzed with re- 
spect to their sidelobe rejection capabilities. In contrast to these 
methods which are based on detecting a single target with known 
direction and Doppler, the present method uses model order deter- 
mination techniques applied to the AMF or GLRT data observed 
over the range of unknown angle and Doppler parameters. The de- 
termination of model order, i.e., the number of signals present in 
the data, is made by using least-squares model fit error residuals 
and applying the Akaike Information Criterion. Comprehensive 
computer simulation results are presented which demonstrate sub- 
stantial improvement in sidelobe rejection performance and detec- 
tions of multiple sources compared to previous methods. 

1. INTRODUCTION 

A variety of constant false-alarm rate (CFAR) adaptive detection 
statistics have been developed and analyzed for radar target de- 
tection in adverse environments [l]-[8]. Adaptive beamforming, 
adaptive filtering and, generally, joint space-time adaptive process- 
ing (STAP) methods are being increasingly considered for airborne 
radar detection of low-Doppler targets immersed in ground clutter 
and subject to directional noise jamming. An important issue that 
needs to be considered is the sidelobe performance of these adap- 
tive detection algorithms. "False" sidelobe detections can arise 
due to undernulled interferences, intrinsically high sidelobes gen- 
erated by the adaptive beamforming space-time algorithms used 
with limited data snapshots, and other reasons. This can result in 
an unacceptably high false alarm rate. Previous works have fo- 
cused on determining the sidelobe rejection performance of the 
adaptive matched filter (AMF) test [3],[6], the generalized likeli- 
hood ratio test (GLRT) of Kelly [ 1 ], the adaptive coherence estima- 
tor (ACE) test and a cascade of AMF/ACE test [4] or AMF/GLRT 
test [8]. It is to be noted that all of these previous methods are 
based on applying adaptive detection criteria developed for detect- 
ing a single target signal with known direction and Doppler in cor- 
related noise. In contrast to this, the present work uses multiple 
maximum-likelihood model order fits to the AMF or GLRT data 

observed over the range of the unknown angle and Doppler param- 
eters. The resulting fit error residuals are used in the Akaike In- 
formation Criterion (AIC) to deduce the correct model order and 
thereby reject "false" sidelobe detections, and improve detection 
and resolution of multiple sources. 

2. MAXIMUM-LIKELIHOOD MODEL ORDER 
DETERMINATION USING AMF OR GLRT 

We begin by considering two well-known adaptive detection meth- 
ods, AMF and GLRT, as a starting point for our new method de- 
scribed below and also for performance comparison purposes. We 
consider an JV-element array and seek to determine the presence of 
one or more signals in an observation vector (or snapshot) x called 
the test cell. The methodology developed here applies to the gen- 
eral STAP problem where the data vector x can be a concatenated 
space-time vector of array element data and coherent pulse sam- 
ples; however, the computer simulation results presented in section 
5 use only simulated spatial array data so our development here 
will be mainly presented in that context 

Consider then that the AMF [3] and GLRT [1] metrics have 
been computed as a function of angle (azimuth) and result in the 
following test: 

JAMF(Ö): 
d(«)flR-1x 

d^ÄR-'df«) 
w(0)H: 

|2H, 
^ äOAMF,      (1) 

1    Ho 

where d(0) is the signal steering vector for angle 6, i.e., the array 
response vector, R is the sample covariance matrix of the interfer- 
ence plus noise (whose true covariance matrix is R), based on an 
auxiliary set of K data vectors Xi, i = 1,... , K which share the 
same interference plus noise only covariance matrix with the test 
datax 

R: 
1      K 

K 
XiX; (2) 

and KOCAMF is the threshold which can be determined numerically 
for a given false alarm PFA. The hypothesis Hi denotes signal plus 
noise and the null hypothesis Ho denotes noise only. An alternate 
form i s shown on the right side of (1) where an array weight vector 

= R-ld(fl) IV df^R-'d^) w(0) can be defined as w(Ö): 

Equation (1) represents the adapted array output for the test vec- 
tor x normalized by the output interference plus noise power. 
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would include the peaks of the JAMF(#) function. We have 

Fig. 1. JAMF(ö) function for a 20dB signal at broadside, N = 10, 
K = 100, PFA = 10"6. 

In order to control the sidelobe response of the adaptive ar- 
ray, the weight vector w(0) is often computed as w(0)   = 

K~ldsh{9) I Jdsh(8)»Ü^dsh(8) , whered,h(6) = d(9) © 

WT and wr is an appropriate taper or shading function, and 0 
denotes the element-by-element Schur product 

The GLRT test is 

Jcua(9) = 
JAMF(6) 

1 + £x»R- *X Ho 
(3) 

where Kj is the threshold which can be determined for a given 
false alarm PFA. The JAMF(ö) or JGLRT(ö) are evaluated at some 
discrete set of points in the angle 0 which covers the range of ex- 
pected target angles. Note that as far as variation with 8 is con- 
cerned, Joua{8) is merely proportional to JAMF(ö) since the de- 
nominator in (3) does not depend explicitly on the search variable 
8. An example of the JAMF(ö) function for a single target is shown 
in Figure 1. Note that if all peaks above the threshold, which has 
been set for a probability of false alarm PFA of 10-6, were to be 
considered detections the figure shows that there should be six de- 
tections of which five of them would be false alarms (solid line). 
Even if a Chebyshev taper with —50dB sidelobe level is used, there 
are still two false detections (dashed line). The shading is only 
partly effective in the presence of interferences, in this case one 
jammer at —30 degrees. 

Now assume that the test data vector contains TO target signals, 
m = 0,1,... , M where the maximum number M may be known 
from system considerations. Then, 

x = D,a + n, (4) 

where D, = [d(8,ij, • • • , d(9,m)] is a N x TO matrix of target 
steering vectors and a is an m x 1 vector of complex amplitudes 
of the TO signals. The complex value of the JAMF(ö) function rep- 
resents the application of the weight vector w(ö) to the vector x 
resulting in the expression 

y{8) = w(9)"x = w(0)HD3a + v(6), (5) 

where v(8) = w(0)Hn. We assume that y(9) has been evaluated 
at KP distinct points 0i,... , 9KP, where Kp > m. These points 

3/1 
  

"   w(öi)"D3a 

+ 
"   v{9i) 

. VKp . . w(e*rp)HD,a . v{9Kp) 

or, compactly, 

Y = Ha + v, 

(6) 

(7) 

where H = WHDS, and W = [w(0i), • ■ • , w(0Kp)], and v = 
[v(8i), • • • , v(8fcP)]T- The covariance matrix of v is 

Rv = E[wH] (8) 

Since the order of the square matrix Rv is Kp and the transfor- 
mation in (8) necessarily yields rank(Rv) <N,h follows that we 
must have Kp < N for Rv to be nonsingular. Hence we require 
that TO < Kp < N. Denote the sample covariance matrix of 

v as Rv. Under the assumption of Gaussian statistics for the in- 
terference plus noise vector n, the maximum-likelihood estimates 
of the amplitude vector a and the angles 6S = [8si, ■ • ■ ,8sm] 
are obtained by minimizing the nonlinear weighted least-squares 
criterion 

JML(a, 0J = [Y - Ha]H Rv"1 [Y - Ha] 

= ||RV-1/2[Y-Ha]||\ (9) 

where Rvl/2 is the square-root of the Hermitian positive-definite 
matrix R^1 and ||-|| denotes the Euclidean norm of a vector. Let 

£i  — xVv 

Then, 

1/2 Y, the "whitened" data vector and Hu 

JML(a,e3) = ||Z-Htl,(0s)a|| 

R71/2H. 

(10) 

For a given ©s, as is well known, JML is minimized with respect 
to a when 

a=[H£(e3)iMe3)]-1H£(e5)z.       on 

Substitution of a as given by (11) into (10) yields the weighted 
least-squares residual JML as 

jML(a,e.) = |i(i-p(e.))z|| (12) 

where P(e3) = H„(6S) [Hj(e3)HM(63)] 
x H£(6S) is the 

orthogonal projection operator and I is the identity matrix. Equa- 
tion (12) can be further minimized with respect to 6S yielding the 
maximum-likelihood estimate 63. However, it is noted that this 
is a nonlinear optimization problem which may be computation- 
ally expensive to solve for m > 2. For most of the sidelobe de- 
tection problems considered here involving comparable strength 
targets that are likely to be separated from each other by more 
than a beamwidth, the locations of the peaks of the JAMF(ö) func- 
tion (which can be readily computed) provide a reasonably accu- 
rate estimate of 6, and are used to evaluate (12). However, for 
some problems, e.g., the detection and resolution of a weak source 
in presence of a strong source, the location of the global peak of 
JAMF(ö) may be taken as the angle estimate 8\ corresponding to 
one source while 82 is varied so as to minimize (12), keeping 8\ 
fixed. 
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It is noted that the preceding development has been given in 
"beam-space" since this reduces computations and is most appro- 
priate for resolving sidelobe detections obtained with using the 
JAMF(Ö) function (a normalized beam-space function). It can be 
seen that the element-space solution can be obtained either directly 
or from the preceding development by choosing Kp = N and W 
to be the AT x AT identity matrix. A simulation example using the 
element-space solution is given in section 5. 

The number of target signals is determined by applying the 
procedure described above for model orders m = 1,2,... , M 
and choosing that m for which the Akaike Information Criterion 
[9],[10] given below is a minimum: 

AIC(m) = - log (Likelihood function|a, 03,m) 

+ (number of independently 

adjusted parameters in model) 

= JML(a,63)+3TO, (13) 

where Jta.(ä,es) is given by (12) and the approximate estimate 

&s discussed above is used. The method derived here is referred 
to as the Multi-Target AMF (MT-AMF) method. 

3. DIAGONAL LOADING 

Diagonal loading is a simple and commonly used procedure for 
sidelobe reduction. It is often used when the number of snapshots 
K is small, e.g., less than twice the number of elements. The 
diagonal loading operation simply adds a diagonal matrix to the 
sample covariance matrix to overweight its diagonal elements, i.e.. 

RDL = R + <TI, (14) 

where a is the diagonal loading factor. In the case of uncorre- 
lated interference and noise, diagonal loading modifies the sample 
covariance matrix at the cost of noise enhancement In the case of 
correlated interference, a large amount of diagonal loading also de- 
grades the adaptive interference cancellation. However, it has been 
shown that a reasonable amount of a can dramatically improve the 
performance for small K. 

When diagonal loading is applied, the AMF function is given 
by 

JAMF(0)= 
d(0)"R^xr 

dWB^RR^dW' 
(15) 

Additional tapered weight can be applied by replacing d(0) by 
d,h(9). In the matched filter (MF) case, i.e., K = oo, the de- 
tection statistic does not change when diagonal loading is applied. 
However, in the case of limited snapshots, the determination of the 
threshold for a given PFA seems to be analytically intractable [11]. 
Thus, a Monte Carlo computation is required. For an uncorrelated 
interference and noise case, the authors in [12] have shown im- 
provement of signal detection for small K using diagonal loading. 
In this paper, we show similar improvement of PD in the case of 
correlated interference. In addition, we apply the MT-AMF to the 
diagonally loaded AMF function to further reduce false sidelobe 
detections. 

4. MULTI-TARGET GLRT 

Although this paper has emphasized the multi-target AMF in the 
development and performance evaluation, it is noted here that the 
authors have derived [13] a generalization of Kelly's GLRT adap- 
tive detection statistic [1] to multiple targets. It is shown in [13] 
that the multi-target version of Kelly's GLRT for M targets located 
at angles ©s = [$,i, • • ■ , 8,M] is given by 

JMT-GLRT(©:J) = 
||p(e,)y| 

i + iHIyll2 (16) 

where P(GS) = Dw(&3) [D^ie3)T>w(es)} 1 D*(6,) and 
D*,(6a) = R"1/2D.(e,). R~1/2 is the square-root of the 
Hermitian positive-definite matrix R_1. y = R~1/2x is the 
"whitened" data vector and P(©3) is the orthogonal projection 
operator that projects any vector onto the subspace spanned by the 
columns of DS(0S) (i.e., the subspace spanned by the steering 
vectors of the M targets). 

5. PERFORMANCE EVALUATION 

The PFA of the GLRT test is given by [3] 

PFA.GLKT = 
(1 + a)1 (17) 

where L = K + 1 - N, a = 7/ (1 + 7), and 7 is the threshold 
term of (3). The threshold for the AMF is determined by evaluating 
the following integral using numerical integration and bisection 
iterations as in [3]: 

PFA.AMF 
Jo 

Mp;L + l,N-l) 
(1 + P<*AMF)

L dp, 

where 

fp(x;n,m) = 
(n + m-1)! 

(n-l)!(m-l)! 

(18) 

(19) 

is the central Beta density function, and p is the loss factor which 
considers the SNR loss due to finite number of snapshots in the 
sample covariance matrix. The analytic form of the probability 
of detection for a single source is also given in [3] which we ex- 
cluded for brevity. Our Monte Carlo simulation results have been 
confirmed to match these analytical curves. 

We consider a linear equally spaced array of 10 elements with 
half-wavelength spacing (nominal beamwidth =12 degrees) for 
most of the simulations provided in this section. A noise jammer 
signal of strength 40dB relative to thermal noise is placed at —30 
degrees and the PFA is set to be 10-6. The scanning angles are from 
—50 to 50 degrees in azimuth. A single source of varying SNR is 
placed at broadside and the performance of the algorithms in single 
source detection and false sidelobe rejections are compared. The 
AMF detection only relies on the peaks above the given threshold, 
but the MT-AMF test takes the peaks (for all simulation examples 
except the last one) and tests for model order m = 1 and 2. If 
m = 1 is decided, the overall peak is retained as an indicator of a 
single signal and the other peaks are rejected. The probability of 
detecting the mainlobe signal is plotted in Figure 2, regardless of 
the number of peaks or model decisions, after 5000 Monte Carlo 
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runs. We observe no loss in the detection for the MT-AMF method. 
Then, the probability of false sidelobe detections is plotted for the 
two algorithms in Figure 3. The AMF gives rise to high false side- 
lobe detections at high SNR, but the MT-AMF greatly reduces the 
false sidelobe detections and its probability also saturates as SNR 
increases. The false sidelobe detections of the proposed method go 
down rapidly for increasing K and the lower bound is for K = co, 
which is the multi-target matched filter. For tapered weight vector 
w(t9), we also compare the sidelobe rejections performance, as 
depicted in Figure 4. Note that the use of a taper with the con- 
ventional AMF method only reduces sidelobe detections slightly 
at the cost of a slight decrease in mainlobe detection probability 
(not shown). However, the use of model order determination using 
AIC with tapered AMF data shows almost the same dramatic im- 
provement in reducing false sidelobe detections as before with the 
same mainlobe detection probability as the conventional tapered 
AMF. 

The same single source scenario except for a PFA of 10-3 and 
K = 20 using diagonal loading and tapered weights is further 
studied. Monte Carlo simulations are performed to determine the 
thresholds which yield the equivalent PFA for various levels of di- 
agonal loading. Note in this case the PFA accounts for not only 
the noise but also the jammer that is not effectively cancelled due 
to the use of diagonal loading. The probability of detecting the 
mainlobe signal is plotted in Figure 5. Note the improved PD per- 
formance using various levels of diagonal loading. The MT-AMF 
with diagonal loading and tapering also yields identical PD per- 
formance. The probability of false sidelobe detections is plotted 
for the two methods in Figure 6. As the diagonal loading level 
increases, the probability of false sidelobe detections using AMF 
lowers most of the time (except for the high SNR region). On the 
other hand, the MT-AMF shows significant improvement in reduc- 
ing false sidelobe detections comparing to the AMF with the same 
diagonal loading level. 

Then, two sources of equal strength are placed at broadside and 
45 degrees. The probability of detecting both sources within a 
±10 degrees angle constraint is plotted for the AMF and MT- 
AMF algorithms, as depicted in Figure 7. We observe the same 
detections between the conventional method and the proposed al- 
gorithm. The two sources detections using the GLRT is plotted 
in Figure 8. However, for K = 20, the GLRT yields extremely 
poor performance in detecting both sources due to the normaliza- 
tion factor in the denominator of (3). The derivation of the GLRT 
is under the assumption of a single source; therefore, despite its 
advantage in single source detections, as depicted in Figure 9, and 
sidelobe rejections for lower K, as depicted in Figure 10, it is not 
an appropriate model for two sources. 

Another two sources detections scenario is analyzed for a lin- 
ear equally spaced array of 32 elements. One mainlobe source 
is placed at broadside with an array SNR of 25dB, and a second 
sidelobe source is placed at 45 degrees with varying SNR levels. 
A noise jammer signal of strength 40dB relative to thermal noise 
is again placed at —30 degrees and the PFA is set to be 10~6. The 
MT-AMF and MT element space methods are applied to source 
detections with a varying angle search of the weaker source and 
fixing the angle of the stronger source at the global peak of the 
AMF function. The number of data points K, used in the MT- 
AMF is nominally N/2 and are taken from the peaks of the AMF 
function without the threshold constraint We count detections of 
both sources when the model order decision yields m = 2 and 
the angle estimates are within ±3.2 degrees (nominal beamwidth) 

AMF: SINGLE SOURCE DETECTION. N - 10. P... 10"" 

Fig. 2. Probability of detecting single mainlobe target signal using 
AMF and MT-AMF. Note equal performances of the two methods. 

AMF: FALSE SIDELOBE DETECTIONS. N-10. P„ 

[-*- K.20 (AUF) 
i-a-K.50(AMF) 
-,^-K— (AMF) 

-&- K-201UT-AMF) 
-*- K-50 (MT-AMF) 
-~ K-- (MT-AMF) 

ARRAY SNR (dB] 

Fig. 3. Probability of false sidelobe detections using AMF and 
MT-AMF. Note the substantial improvement of the MT-AMF 
method in false sidelobe rejections at high SNR. 

of the true angle of arrivals. As depicted in Figure 11, the MT- 
AMF method improves the detections of both sources significantly 
from the AMF method, where the detections are based on the top 
two peaks above the threshold. When the strength of the side- 
lobe source dominates, strong interactions of its sidelobe response 
would perturb the weaker mainlobe source and reduce the prob- 
ability of detections. Nevertheless, we can resolve such problem 
by using the MT-AMF method. The MT element space method is 
applied to the element data x and further improves the two sources 
detections; nonetheless, the beam-space MT-AMF method has sig- 
nificant computational advantages when the number of elements is 
large. The ML element space method, which searches for the ab- 
solute minimum residual on the two-dimensional angle parameter 
space (high computational complexity), is also shown as the upper 
bound of the two sources detections. 

52 



AMF: FALSE SIDELOBE DETECTIONS. N - 10. P AUF: TWO SOURCES DETECTIOKS. N - 10. P-■ 

ARRAVSNR<<ia) 

Fig. 4. Probability of false sidelobe detections using tapered AMF 
weights (-50dB Chebyshev). Note significant improvement even 
when taper is used 

; -fr- K 20 (AMF)         1 
■vW K 50 (AMF)         1 

09 -*- K -(AMF) 

-Ö- K 20 [MT-AMF)! 
-+- K 50 (MT-AMF)! 

0-S — K - (MT-AMF) 

A 
Mo« 
S 
O-0.5 

«t»»t«l»*«»»>»<>» 

Fig. 7. Probability of detecting both sources within ±10 degrees 
using AMF and MT-AMF. Note equal performances of the two 
methods. 

AMF: SINGLE SOURCE DETECTION (DIAGONAL LOADING . TAPER). N . 10. K .20. P. GLRT: TWO SOURCES DETECTIONS, N. 10. Pt..10~* 

ARRAY SNR |i]8] 

Fig. 5. Probability of detecting single mainlobe target signal using 
the diagonal loaded and tapered (—50dB Chebyshev) AMF and 
MT-AMF. Note equal performances of the two methods. 

Fig. 8. Probability of detecting both sources within ±10 de- 
grees using GLRT. Note the degraded performance, especially for 
smaller K. 

AW: FALSE SIDELOBE DETECTIONS [DIAGONAL LOADING .TAPER). N - 10. K 

-•-« 0   (AMF) 

1   (AMF) 

-f- a 10 (AMF) 

-#- o 0  (MT-AUF) 

08 
-*- a 1   (MT-AMF) 

10(UT-AMF) 

{07 

k 
So.5 

ARRAY SNR (dB) 

Fig. 6. Probability of false sidelobe detections using diagonally 
loaded and tapered AMF weights. Note significant improvement 
even when diagonal loading and taper are used. 

Fig. 9. Probability of detecting single mainlobe target signal using 
GLRT. Note superior performance over AMF and MT-AMF for 
small if. 
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6. CONCLUSIONS 

GIBT: FALSE SIDELOBE DETECTIONS. N . 10. P,  - 10"* 

-*- K-2o<QLWr) 
| -^ K-50<OLRT) 
] ^ K-- (QLRT1 

5o,3- 

»02- 

0.1 - 

mirlli ■ i H 
ARRAY SMI (dB) 

Fig. 10. Probability of false sidelobe detections using GLRT. Note 
good sidelobe rejection capability for smaller K at the expense of 
reduced detections of two sources (Fig. 8). 

AM>   two«XMUSOrT(CTK>CN>3£K>M.P„.10"* 

Sot 
c 

— ML ELEMENT-SPACE 
— MT ELEMENT-SPACE 
-.- MT-AME BEAM-SPACE 

Fig. 11. Probability of detecting both sources within ±3.2 degrees 
using AMF, MT-AMF. and MT element space methods. Note su- 
perior performances of the two MT methods. 

In this paper, we have shown substantial false sidelobe rejection 
improvement and two sources detections using the proposed model 
order determination method. The algorithm is efficient in compu- 
tations and can be easily implemented in existing adaptive radar 
systems. 
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